

OLYMPIAD CORNER

No. 438

The problems in this section have appeared in a regional or national mathematical Olympiad.

Click here to submit solutions, comments and generalizations to any problem in this section

To facilitate their consideration, solutions should be received by February 15, 2026.

OC756. Let $A \in \mathcal{M}_2(\mathbb{R})$ be a matrix with real entries such that

$$\det(A^{2014} - I_2) = \det(A^{2014} + I_2)$$

and

$$\det(A^{2016} - I_2) = \det(A^{2016} + I_2).$$

Prove that $\det(A^n - I_2) = \det(A^n + I_2)$, for any $n \in \mathbb{N}$. Above \mathbb{N} is the set of positive integers and I_2 is the 2×2 identity matrix.

OC757. Find all continuous bijective functions $f : [0, 1] \rightarrow [0, 1]$ such that

$$\int_0^1 g(f(x))dx = \int_0^1 g(x)dx,$$

for any continuous function $g : [0, 1] \rightarrow \mathbb{R}$.

OC758. Consider $A, B \in \mathcal{M}_n(\mathbb{C})$ such that $AB = BA$ and $\det B \neq 0$.

- a) If $|\det(A + zB)| = 1$, for all $z \in \mathbb{C}$ with $|z| = 1$, prove that $A^n = 0_n$;
- b) Is the conclusion true if the commutative condition is dropped?

OC759. Let ABC be a scalene triangle, let I be its incentre, and let A_1, B_1 , and C_1 be the points of contact of the excircles with the sides BC, CA , and AB , respectively. Prove that the circumcircles of the triangles AIA_1, BIB_1 , and CIC_1 have a common point different from I .

OC760. Let \mathbb{N} denote the set of positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that

$$\gcd(f(x), y)f(xy) = f(x)f(y)$$

for all x and y in \mathbb{N} .

