OLYMPIAD CORNER

No. 434

 $The \ problems \ featured \ in \ this \ section \ have \ appeared \ in \ a \ regional \ or \ national \ mathematical \ Olympiad.$

Click here to submit solutions, comments and generalizations to any problem in this section

To facilitate their consideration, solutions should be received by September 30, 2025.

OC736. Solve in \mathbb{R} the equation $[\log_2 x] = \sqrt{x} - 2$, where [x] denotes the integer part of x.

OC737. Find all real solutions of the equation

$$7^{\log_5\left(x^2 + \frac{4}{x^2}\right)} + 2\left(x + \frac{2}{x}\right)^2 = 25$$

 $\mathbf{OC738}$. Prove that for each $z \in \mathbb{C}$ the following inequality holds

$$|z^{2} + 2z + 2| + |z - 1| + |z^{2} + z| \ge 3.$$

When does the equality hold?

OC739. In triangle ABC with AB = AC let I denote the incenter of the triangle. Line BI meets the circumcircle a second time in point D. Find the measures of the angles of the triangle if BC = ID.

OC740. Find the 73rd digit from the end of $111...1^2$, where the number of ones is 2012.