Euler's Constant

In this problem, we will investigate the partial sums $S_n = \sum_{k=1}^n \frac{1}{k}$ as $n \to \infty$. In particular, we aim to show that the sums behave like the natural logarithm, by showing that there exists a constant γ such that

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma$$

The constant γ is called *Euler's constant*.

(a) Let

$$T_n = \sum_{k=1}^n \frac{1}{k} - \ln n.$$

Evaluate T_n for n = 1, 2, 3, 4, 5.

- (b) For T_n defined as in part (a), show the sequence $\{T_n\}$ converges by following the following steps:
 - (i) Show the sequence $\{T_n\}$ is monotone decreasing. (Hint: Show that $\ln(1+\frac{1}{n}) > \frac{1}{n+1}$.)
 - (ii) Show the sequence $\{T_n\}$ is bounded below. (Hint: Express $\ln n$ as a definite integral.)
 - (iii) Conclude that $\{T_n\}$ converges.
- (c) Now estimate how far T_n is from γ for a given integer n.
 - (i) Show that $\ln(n+1) \ln n < \frac{1}{n}$

(ii) Show that for any integer $n, T_n - T_{n+1} < \frac{1}{n} - \frac{1}{n+1}$

- (iii) Show that for any integers n and m with n < m, $0 < T_n T_m < \frac{1}{n} \frac{1}{m}$. (Hint: Make a telescoping sum.)
- (iv) Show that $0 \le T_n \gamma \le \frac{1}{n}$.
- (v) Use a computer algebra system to estimate γ to an accuracy of within 0.001.