## Separation of Variables - division by 0

Normally when we use separation of variables to solve

$$
\frac{d y}{d x}=g(x) h(y)
$$

we divide by $h(y)$ and ignore the fact that this function may be 0 . In actuality, we should be checking the cases where $h(y)=0$ and $h(y) \neq 0$ separately, for e.g.

$$
\begin{aligned}
\frac{d y}{d x} & =2 x y & & \\
\frac{1}{y} d y & =2 x d x & & \text { if } y \neq 0 \\
\int \frac{1}{y} d y & =\int 2 x d x & & \text { if } y \neq 0 \\
\ln |y| & =x^{2}+C_{1} & & \text { where } C_{1} \text { is a constant } \\
|y| & =e^{x^{2}+C_{1}}=C_{2} e^{x^{2}} & & \text { where } C_{2} \text { is a positive constant } \\
y & =C_{3} e^{x^{2}} & & \text { where } C_{3} \text { is a non-zero constant }
\end{aligned}
$$

In the case of $y=0$, notice that this is indeed a solution to the given differential equation, so our solution can be written as

$$
\begin{aligned}
& y=C_{3} e^{x^{2}} \\
& \text { or } y=0
\end{aligned} \quad \text { where } C_{3} \text { is a non-zero constant, if } y \neq 0,
$$

However, notice that if we replace $C_{3}$ with 0 , then the solution $y=0$ is recovered, so we may instead write (the more usual presentation of) the solution as:

$$
y=C e^{x^{2}} \quad \text { where } C \text { is a constant }
$$

That means that if we completely ignored the fact that we can't divide by 0 (or forget), we get the right answer anyway!
Can you come up with a differential equation in which the division by 0 causes an issue? That is, if you don't consider the case where $h(y)=0$ separately, you get the wrong answer.

