2020-2021 Winter Break Math Challenges: Winners

Note: In the case of a tie, a special prize was given to a randomly selected winner out of the best scores, which is indicated by a ${ }^{*}$) by their name.

Challenge 1: Digit puzzle

Total number of copies used (fewer is better; optimal score is 65):
(1) Division 1: Rishi Bhaumik (81)
(2) Division 2: Jayden Gong (97)
(3) Family division: Aggarson (85); Kehrig (78 - this is an alumni family)

Challenge 2: Approximations

Value obtained (closer to 2020 is better; optimal score is 2020):
(1) Division 1: Rishi Bhaumik (2160)
(2) Division 2: Jaden Gong, Martin Liu, Armin Jessa(*), Liora Xu (2160)
(3) Family division: Aggarson (2030); Kehrig (2020 - this is an alumni family)

Here is one way to get exactly 2020:

Suprising Math facts about Hanukkah My art represents Hanukkah. Hanukkah is a Jewish holiday in the Winter month of December. It is 8 nights and 9 days long. You might notice there are 9 candle holders, represented by the branches The center candle is called the Shamash. On the 1 st night the Shamash lights candle number 1. Shamash $+\frac{1}{4}=2$
Shamash + * $x_{2} \times 2=3$
Shamash $+\frac{0}{6} \times 3=4$
Shamash $+2 \times 4=5$
Shamash $+4 \times 5=6$
Shamash + 遇 $\times 6=7$
Shamash $+5 \times 7=8$
Therefore we use 44 candles each Hanukkah.

Challenge 3: Art - Grade 3: Jonathan Mandel

Challenge 3: Art - Grade 4: Martin Liu

was

It wossnowing outside, and it freezing cold.
I sat beside the window, and started. But at that minute my mind was blank. I looked out the window, even though it wshard to see in the snowy weather, I still saw my friend building a snowman. Then I had an idea, to draw a snowman. I got creative, and used my imagination.
I used about $4 / 5$ of the rectangular paper for the background, which wis full of snow. And about $1 / 5$ of the paper for the snowman. As I said, I got creative. So, I made the hat as a cone, and there was a fluffyball on top of it. The hat was located on top of the round head, the head was a circle, and on it, I drew eyes and nose andamouth. The two eyes were located at about the first $1 / 4$ of the head, the eyes
were shaped like stars each of than thad five points. The nose which was shaped as an arrow was at the middle of the head, and $1 / 2$ of it is buried in the snow. The mouth was at the bottom of the head, it was shaped like $1 / 2$ of a circle, the other $1 / 2$, of course was buried 3 cm deep in the snow. The middle of the snowman was shaped as a octagon, it had twa buttons and two hands. The first button was a circle above the second button, the first button was in the firs
$1 / 2$ of the middle, and the holes in it were shaped as triangles. The second button was of course at the second $1 / 2$ of the middle, the holes in it were shaped as pentagons. The right hand, which was a broom, had $1 / 3$ of it in the snow, buried about $7(\mathrm{ml}$ inside \quad) the snow, the top was shaped as a triangle.

The left hand, which was a broom too, had $1 / 4$ of it in the snow, buried about 5 cm of it inside the snow, the top is shaped ass a trapezoid.
The bottom, which was a octogon too, only had
two buttons. Button one was a circle, and had diamond shaped holes in it, there was four in total.
Button two also was a circle and had four holes, but the diamond shaped holes mere reposed as square holes! After that, I drew a ut of lines at the back, to make it look like its snowy! I was really happy with my drawing. Now I'm going to hang it on my door and... Ops, I'm running out of papers, so I guess this is "THE END"?

The way that the pine cone represents math is in the spirals. In nature, many plants showcase the Fibonacci Sequence and Lucas Numbers. In my picture, I drew a Fibonacci pine cone with spirals of 8 one way, and 5 the other, as shown with the blue and white glue. 8 and 5 are Fibonacci numbers, therefore proving again that these numbers are truly nature's numbers.

This art piece is both winter-themed and math-related. The far away buildings on the horizon are the lengths of pi in order from left to right (3.14159...) Starting from the right side of the z -axis, and going right in a spiral are the digits of the e-number. On the right side of the z-axis, the trees are coated with snow and the mountain tops are also covered in snow. On the contrary, on the left side of the z-axis, all of the leaves haven't disappeared just yet. Thus, the left side represents "light" winter (beginning of winter) while the right side represents harsher weather conditions and "extreme" winter. The e-number (2.71828182) is commonly used in math 30-1 and calculus (which I noticed when doing both courses). I wrote 114 e-numbers around the circle and there are usually six "leaves" on a snowflake. When divided, the answer given is the 8th prime number, number 19. This is also digit six of the fibonacci sequence. I have incorporated the fibonacci sequence into my artwork by using it as a spiral (which symbolizes wind because it is winter and it's very cold.) Thus, I have incorporated math-related concepts such as pi, the fibonacci sequence, the z-axis, and e number in my artwork. I have also developed prominent connections using symbolism (ex. comparing and contrasting the two winter conditions using the z-axis), and connected these concepts to winter (ex. fibonacci sequence represents wind - common weather in winter).

Blue line on the second image is the z-axis.

Challenge 3: Art - Family division: Wuntke

Correct solutions submitted by: Martin Liu, Gong family $\left({ }^{*}\right)$, Hosseinzadeh family, Kehrig family,
Wuntke family.

	7	12	13	9	11	7	6	6	4	5	5	8	7	8	7
3				X	X	\times	\times	X	X	\times	X	X	\times	\times	\times
3				X	X	X	X	X	X	X	X	X	X	X	X
7						\times	X	\times	X		x	\times	X	X	
8								\times	\times	x	x	x	\times	\times	
11	\times								X				X	\times	
8	\times						X	\times	X	\times	x		\times		
7	\times						x	\times	X	X	x	\times			X
5	\times			\times		X	x	X	X	X	x	\times			X
6							X	\times	x	X	x	X	x	\times	X
12									X	X	x				
6		X	X	x	x	\times				X	x		x		X
5	X	X	X	X		X	X	X	X	X					\times
11	\times					\times								\times	x
9	\times	X		X	X	\times	X								
14	X														

Challenge 5: Suguru
Correct solutions submitted by: Martin Liu, Gong family, Hosseinzadeh family, Kehrig family, Rao family $(*)$, Wuntke family.

3	1	2	5	3	5	1	5	1	3	1	2	1	3	1	4
4	5	3	4	2	4	2	4	2	4	5	3	5	2	5	2
2	1	2	1	5	1	3	1	5	3	2	1	4	3	4	1
4	5	4	3	4	2	4	2	4	1	5	3	2	1	2	5
3	2	1	2	1	3	1	3	5	2	4	1	5	4	3	1
1	5	4	5	4	2	5	2	4	1	3	2	3	2	5	2
2	3	1	3	1	3	4	1	3	5	4	5	4	1	4	3
1	5	2	4	2	5	2	5	2	1	2	1	2	3	2	1
3	4	3	1	3	1	3	1	4	3	4	3	5	1	5	3
5	1	5	2	4	2	4	2	5	1	2	1	2	3	2	1
4	3	4	3	5	1	3	1	3	4	3	4	5	1	5	3
1	2	5	1	4	2	5	4	2	1	5	2	3	2	4	2
3	4	3	2	5	3	1	3	5	3	4	1	4	5	3	1
1	5	1	4	1	2	5	2	4	2	5	3	2	1	4	2
4	3	2	5	3	4	3	1	5	1	4	1	5	3	5	1
2	1	4	1	2	1	2	4	3	2	5	2	4	1	2	3

