8.2 example SOLUTIONS

1. On $t \in [0,3]$ in seconds, we have two particles described by:

Particle	position (m)	velocity (m/s)	acceleration (m/s ²)
A	$s_A = \frac{t(1-t)^2}{t+1} + 2$	$v_A = \frac{2t^3 + t^2 - 4t + 1}{(t+1)^2}$	$a_A = \frac{2(t^3 + 3t^2 + 3t - 3)}{(t+1)^3}$
B	$s_B = t \ln(t+1)$	$v_B = \frac{t}{t+1} + \ln(t+1)$	$a_B = \frac{t+2}{(t+1)^2}$

(a) Calculate $\frac{1}{3} \int_0^3 v_A dt$ and interpret the result, including units.

Solution: 1 m/s. This is the average velocity of particle A over [0,3].

(b) When is particle A slowing down?

Solution: We need $v_A a_A < 0$.

For $v_A > 0$, $a_A < 0$, we get 0 < t < 0.281.

For $v_A < 0, a_A > 0$, we get 0.587 < t < 1.

(c) Is the distance between particles A and B increasing or decreasing at:

- (i) t = 2?
- (ii) t = 3?

Solution: Let $s(t) = s_A(t) - s_B(t)$ and $v(t) = v_A(t) - v_B(t)$. Notice that distance increasing means sv > 0. In this case, we can check that s(t) > 0, so we only need to see when v(t) > 0 to determine when the distance is increasing.

- (i) At t=2, v(2)<0, so the distance between particles A and B is decreasing.
- (ii) At t = 3, v(3) > 0, so the distance between particles A and B is increasing.
- (d) What are the maximum and minimum distances between particles A and B?

Solution: We can check that $s_A > s_B$ on this interval, so it suffices to check the extrema of s(t). To do so, we check critical points of v(t). v(t) is defined on all of [0,3], and v(t) = 0 at $t \approx 0.16133, 2.24433$. We apply the candidates test on the critical points and endpoints:

t	d(t)
0	2
0.16133	2.073
2.24433	0.430
3	0.841

The maximum distance is 2.073 m and the minimum distance is 0.430 m.