8.2 example

1. On $t \in [0,3]$ in seconds, we have two particles described by:

Particle	position (m)	velocity (m/s)	acceleration (m/s^2)
A	$s_A = \frac{t(1-t)^2}{t+1} + 2$	$v_A = \frac{2t^3 + t^2 - 4t + 1}{(t+1)^2}$	$a_A = \frac{2(t^3 + 3t^2 + 3t - 3)}{(t+1)^3}$
B	$s_B = t \ln(t+1)$	$v_B = \frac{t}{t+1} + \ln(t+1)$	$a_B = \frac{t+2}{(t+1)^2}$

- (a) Calculate $\frac{1}{3} \int_0^3 v_A dt$ and interpret the result, including units.
- (b) When is particle A slowing down?
- (c) Is the distance between particles A and B increasing or decreasing at:
 - (i) t = 2?
 - (ii) t = 3?

(d) What are the maximum and minimum distances between particles A and B?