Mini-math Div 3/4: Wednesday, October 30, 2024 (7.6-7.9) (20 minutes)
SOLUTIONS

1. (2 points) Solve the following differential equation:

ﬁ = zysin(z?) - Iny

Solution:

1
/ dy:/wsinxzd:c
ylny

1
In|lny| = —3 cosz? + C}

| lny| — e—% cosz24+C4
1 2 1 2
Iny = 4e 287 H0 op  (Che 20087
1 2 1 2
—g cosT +Cq —gcosT
y = e:te or 6026

2. (2 points) During a chemical reaction, the rate of change of the amount of the chemical re-
maining is proportional to the amount remaining. At time ¢ = 0, the amount of the chemical
is 60 g. At time t = 8, the amount of the chemical is 12 g. At what time ¢ is the amount of

the chemical 4 g?
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3. (2 points) Solve the following initial value problem:
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Since the domain is the largest open interval
domain is x > 5/2.

(B)
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which contains the initial condition, the

4. The number of squirrels in a park at time ¢ is modelled by the function y = F'(t) that satisfies

the logistic differential equation % = ﬁy(woo —

y), where ¢t > 0 is measured in weeks. The

number of squirrels in the park at time ¢ = 0 is F'(0) = b, where b is a positive constant.

(a)

the park?

i. (1 point) If b = 300, what is the largest rate of increase in the number of squirrels in

Solution: Since 300 < 1500/2 = 750,
carrying capacity, 750. Then
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F grows most rapidly when it is half the
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ii. (1 point) If b = 1000, what is the largest rate of increase in the number of squirrels

in the park?

Solution: For F' > 750, % > ( and
F = 1000.
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(b) (2 points) If b =150, find lim F(¢) and interpret the meaning of this limit in the context
t—o0

of the problem. For reference, the differential equation is % = ﬁy(1500 — ).

Solution: The carrying capacity is 1500, so tlim F(t) = 1500.
— 00

This means in the long term, the population of squirrels in the park will tend to 1500.

(c) (4 points) (*) Find the function F(t) if b = 500.

Solution:
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Using the initial condition,
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(Alternatively, go directly to the general solution if you have memorized it. Be careful
with using the correct general solution which depends on the form of the logistic DE.)




