Name: _____

Mark: _____ / 14

Mini-math Div 3/4: Wednesday, October 30, 2024 (7.6-7.9) (20 minutes)

1. (2 points) Solve the following differential equation:

$$\frac{dy}{dx} = xy\sin(x^2) \cdot \ln y$$

2. (2 points) During a chemical reaction, the rate of change of the amount of the chemical remaining is proportional to the amount remaining. At time t = 0, the amount of the chemical is 60 g. At time t = 8, the amount of the chemical is 12 g. At what time t is the amount of the chemical 4 g?

A.
$$\frac{4\sqrt{42}}{3}$$
 B. $\frac{28}{3}$ C. $\frac{8\ln 15}{\ln 5}$ D. $\frac{8\ln 4}{\ln 12}$ E. $\frac{8}{3}$

3. (2 points) Solve the following initial value problem:

 $\mathbf{C}.$

D.

$$\frac{dy}{dx} = y^2, \quad y(3) = -2$$
A. $y = \frac{1}{5/2 - x}$ for $x \neq 5/2$
B. $y = \frac{2}{5 - 2x}$ for $x > 5/2$
C. $y = -\frac{1}{x} - \frac{5}{3}$ for $x \neq 0$
D. $y = -\frac{5x + 3}{3x}$ for $x > 0$

- 4. The number of squirrels in a park at time t is modelled by the function y = F(t) that satisfies the logistic differential equation $\frac{dy}{dt} = \frac{1}{2000}y(1500 y)$, where $t \ge 0$ is measured in weeks. The number of squirrels in the park at time t = 0 is F(0) = b, where b is a positive constant.
 - i. (1 point) If b = 300, what is the largest rate of increase in the number of squirrels in (a) the park?

ii. (1 point) If b = 1000, what is the largest rate of increase in the number of squirrels in the park?

(b) (2 points) If b = 150, find $\lim_{t \to \infty} F(t)$ and interpret the meaning of this limit in the context of the problem. For reference, the differential equation is $\frac{dy}{dt} = \frac{1}{2000}y(1500 - y)$.

(c) (4 points) (*) Find the function F(t) if b = 500.