$\sqrt{2}$ is irrational

Suppose $\sqrt{2} \in \mathbb{Q}$. Then $\sqrt{2}=\frac{a}{b}$ for $a, b \in \mathbb{Z}, b \neq 0$, with $\operatorname{gcd}(a, b)=1$. Then

$$
\begin{aligned}
\sqrt{2} b & =a \\
2 b^{2} & =a^{2}
\end{aligned}
$$

Notice $b^{2} \in \mathbb{Z}$ since $b \in z z$ and the integers are closed under multiplication, so $2 \mid a^{2}$. Since 2 is prime, this implies $2 \mid a$, so that $a=2 c$ for some integer c. Substituting,

$$
\begin{aligned}
2 b^{2} & =(2 c)^{2}=4 c^{2} \\
b^{2} & =2 c^{2}
\end{aligned}
$$

Again, $c^{2} \in \mathbb{Z}$ since $c \in z z$ and the integers are closed under multiplication, so $2 \mid b^{2}$. Since 2 is prime, this implies $2 \mid b$ But then $2 \mid \operatorname{gcd}(a, b)$, a contradiction to $\operatorname{gcd}(a, b)=1$. Therefore, $\sqrt{2} \notin \mathbb{Q}$.

