Name: \qquad Mark: __ / 17

Mini-math Div 3/4: Monday, March 18, 2024 (10.10-10.15) - (25 minutes)

1. (3 points) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges to S. If S_{n} is used to approximate S, what is the least value of n for which the alternating series error bound guarantees an error to strictly within 0.01 ?
2. (3 points) Let $P(x)$ be the fifth-degree Taylor Polynomial for a function f about $x=1$. Information about the maximum of the absolute value of selected derivatives of f over various intervals is given below.

$$
\begin{array}{r}
\max _{0 \leq x \leq 1.5}\left|f^{(4)}(x)\right|=4.6, \quad \max _{0 \leq x \leq 1.5}\left|f^{(5)}(x)\right|=7.2, \quad \max _{0 \leq x \leq 1.5}\left|f^{(6)}(x)\right|=6.8, \\
\max _{1 \leq x \leq 1.5}\left|f^{(4)}(x)\right|=3.2, \quad \max _{1 \leq x \leq 1.5}\left|f^{(5)}(x)\right|=4.7, \quad \max _{1 \leq x \leq 1.5}\left|f^{(6)}(x)\right|=5.1
\end{array}
$$

Find the smallest value of k for which the Lagrange error bound guarantees that

$$
|f(1.5)-P(1.5)| \leq k
$$

3. (4 points) Find the interval of convergence for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n 2^{n}}$
4. (3 points) What is the Maclaurin series for $\frac{\cos x-1}{x}$? Assume differentiability at 0 (e.g. the function has a value at 0 which makes it differentiable). You may, but are not required to, express your answer in summation notation.
5. (4 points) Let f be a function with $f(0)=2$ and $f^{\prime}(x)=\arctan x$. Write the first three non-zero terms of the Maclaurin series for f.
