SOLUTIONS

1. (3 points) Write an equation for the line tangent to the curve defined by $r(t)=\left\langle 2^{t}, 1 / t\right\rangle$ at the point where $x=8$.

Solution: $2^{t}=8$ gives $t=3$. At this value, $y(3)=1 / 3$. Now,

$$
\left.\frac{d y}{d x}\right|_{t=3}=\left.\frac{d y / d t}{d x / d t}\right|_{t=3}=\left.\frac{-t^{-2}}{2^{t} \ln 2}\right|_{t=3}=\frac{-1 / 9}{8 \ln 2}=-\frac{1}{72 \ln 2}
$$

by point-slope, an equation of the tangent line is

$$
y-\frac{1}{3}=-\frac{1}{72 \ln 2}(x-8)
$$

2. (4 points) If $x(\theta)=\tan 2 \theta$ and $y(\theta)=\sec 2 \theta$, find the concavity at $\theta=\pi / 6$.

Solution:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{2 \sec 2 \theta \tan 2 \theta}{2 \sec ^{2} 2 \theta}=\sin 2 \theta
$$

Then

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{\theta=\pi / 6}=\left.\frac{\frac{d}{d \theta}\left(\frac{d y / d \theta}{d x / d \theta}\right)}{d x / d \theta}\right|_{\theta=\pi / 6}=\left.\frac{\frac{d}{d \theta}(\sin 2 \theta)}{2 \sec ^{2} 2 \theta}\right|_{\theta=\pi / 6}=\left.\frac{2 \cos 2 \theta}{2 \sec ^{2} 2 \theta}\right|_{\theta=\pi / 6}=(\cos \pi / 3)^{3}=\frac{1}{8}
$$

Concave up.
3. (2 points) Write down (but do not evaluate) an integral which represents the length of the curve described by the parametric equations $x=t^{3} / 3$ and $y=t^{2} / 2$ from $t=0$ to $t=1$. (Extra challenge: find the exact value.)

Solution: First, note that $x^{\prime}(t)=t^{2}$ and $y^{\prime}(t)=t$

$$
L=\int_{0}^{1} \sqrt{t^{4}+t^{2}} d t \quad\left(=\left.\frac{\left(t^{2}+1\right)^{3 / 2}}{3}\right|_{0} ^{1}=\frac{2 \sqrt{2}-1}{3}\right)
$$

4. (3 points) If f is a vector-valued function defined by $f(t)=\langle 2 \sin t, \cos 2 t\rangle$, then what is $f^{\prime \prime}(\pi / 3)$?

Solution:

$$
\begin{aligned}
f^{\prime}(t) & =\langle 2 \cos t,-2 \sin 2 t\rangle, \\
f^{\prime \prime}(t) & =\langle-2 \sin t,-4 \cos 2 t\rangle, \\
f^{\prime \prime}(\pi / 3) & =\langle-\sqrt{3}, 2\rangle
\end{aligned}
$$

5. (3 points) Find the vector-valued function $f(t)$ that satisfies the initial conditions $f(1)=\langle 4,5\rangle$, and $f^{\prime}(t)=\langle 6 t, 7\rangle$.

Solution:

$$
\begin{aligned}
f(t) & =\left\langle 4+\int_{1}^{t} 6 u d u, 5+\int_{1}^{t} 7 d u\right\rangle \\
& =\left\langle 4+3\left(t^{2}-1\right), 5+7(t-1)\right\rangle
\end{aligned}
$$

6. (4 points) (Calculator-active) At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle\sin \left(t^{2}\right), 2^{\sqrt{t}}\right\rangle$. If the particle is at point $(-3,1)$ at time $t=0$, how far is the particle from the origin at time $t=3$?

Solution: We calculate

$$
\begin{aligned}
& x(3)=-3+\int_{0}^{3} \sin \left(t^{2}\right) d t \approx-2.22644 \\
& y(3)=1+\int_{0}^{3} 2^{\sqrt{t}} d t \approx 7.93628
\end{aligned}
$$

Then

$$
d=\sqrt{[x(3)]^{2}+[y(3)]^{2}} \approx 8.243
$$

