Name: \qquad Mark: ___ / 19

Mini-math Div 3/4: Friday, January 12, 2024 (9.1-9.6) - 20 minutes

1. (3 points) Write an equation for the line tangent to the curve defined by $r(t)=\left\langle 2^{t}, 1 / t\right\rangle$ at the point where $x=8$.
2. (4 points) If $x(\theta)=\tan 2 \theta$ and $y(\theta)=\sec 2 \theta$, find the concavity at $\theta=\pi / 6$.
3. (2 points) Write down (but do not evaluate) an integral which represents the length of the curve described by the parametric equations $x=t^{3} / 3$ and $y=t^{2} / 2$ from $t=0$ to $t=1$. (Extra challenge: find the exact value.)
4. (3 points) If f is a vector-valued function defined by $f(t)=\langle 2 \sin t, \cos 2 t\rangle$, then what is $f^{\prime \prime}(\pi / 3)$?
5. (3 points) Find the vector-valued function $f(t)$ that satisfies the initial conditions $f(1)=\langle 4,5\rangle$, and $f^{\prime}(t)=\langle 6 t, 7\rangle$.
6. (4 points) (Calculator-active) At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle\sin \left(t^{2}\right), 2^{\sqrt{ } t}\right\rangle$. If the particle is at point $(-3,1)$ at time $t=0$, how far is the particle from the origin at time $t=3$?
