1. (2 points) The graph of the piecewise linear function f is shown in the figure to the right. What is the average value of f over $[-3,5]$?
A. -1
B. $-1 / 8$
C. 0
D. $1 / 4$
E. 2

Solution:

$$
f_{a v g}=\frac{\int_{-3}^{5} f d x}{5-(-3)}=\frac{4-3+1}{8}=\frac{1}{4}
$$

D is correct.
2. (2 points) The graph of the velocity of a function is the piecewise linear function shown in the figure to the right. The initial position of the particle at time $t=0$ is $x=1$. What is the total distance the particle travels from $t=0$ to $t=6$?
A. 2
B. 3
C. 4

D. 8
E. 9

Solution:

$$
\int_{0}^{6}|v(t)| d t=1+3+4=8
$$

D is correct.
3. (2 points) The acceleration of a particle is modelled by $a(t)=2 t+3$ for $t \geq 0$. At $t=0$, the velocity of the particle is -2 and its position is 2.5 . What is the change in displacement of the particle from $t=0$ to $t=3$?
A. 9
B. 16
C. 16.5
D. 19
E. 22.5

Solution:

$$
v(t)=\int a(t) d t=\int(2 t+3) d t=t^{2}+3 t+C
$$

Since $v(0)=-2$, we know $C=-2$. Then the change in displacement is

$$
\Delta x=\int_{0}^{3} v(t) d t=\int_{0}^{3}\left(t^{2}+3 t-2\right) d t=\left.\left(\frac{1}{3} t^{3}+\frac{3}{2} t^{2}-2 t\right)\right|_{0} ^{3}=9+\frac{27}{2}-6=16.5
$$

C is correct.
4. (2 points) Suppose f is a differentiable function. Which of the following statements are true:
(I) The average value of the derivative of f over $[a, b]$ is the same as the average rate of change of f over $[a, b]$.
(II) There exists a $c \in[a, b]$ for which $f(c)$ equals the average value of f over $[a, b]$.
A. (I) only
B. (II) only
C. Both (I) and (II)
D. Neither (I) nor (II)
E. The truth of both statements depend on the specific choice of f

Solution: By FTC II,

$$
\frac{\int_{a}^{b} f^{\prime}(x) d x}{b-a}=\frac{f(b)-f(a)}{b-a}
$$

so (I) is true.
Since f is continuous and $[a, b]$ is a closed and bounded interval, the Extreme Value Theorem tells us that there are m and M for which $m \leq f(x) \leq M$ for all $x \in[a, b]$. Then

$$
\begin{aligned}
\frac{\int_{a}^{b} m d x}{b-a} & \leq \frac{\int_{a}^{b} f(x) d x}{b-a} \leq \frac{\int_{a}^{b} M d x}{b-a} \\
m & \leq f_{a v g} \leq M
\end{aligned}
$$

By the Intermediate Value Theorem, there exists $c \in[a, b]$ such that $f(c)=f_{\text {avg }}$, so (II) is true.

C is correct.
5. (2 points) Water is leaking out of a tub at a rate modelled by $r(t)=\frac{1}{t^{2}+1} \mathrm{~cm}^{3} /$ min, where t is in minutes. If the initial volume of the tub is $160000 \mathrm{~cm}^{3}$, which of the following represents the volume of the tub at time t ?
A. $160000+\int_{0}^{t} r(x) d x$
B. $160000-\int_{0}^{t} r(x) d x$
C. $160000-\frac{1}{t^{2}+1}$
D. $160000+\frac{r(t)}{t^{2}+1}$
E. $\frac{1}{t^{2}+1}$

Solution: By FTC II,

$$
\begin{aligned}
-\int_{0}^{t} r(t) d t & =V(t)-V(0) \\
V(t) & =160000-\int_{0}^{t} r(t) d t
\end{aligned}
$$

B is correct.
6. (2 points) Find the area of the bounded region in the first quadrant below both $y=x^{2}$ and $y=2-x$ and above the x-axis.
A. $2 / 3$
B. $5 / 6$
C. 1
D. $7 / 6$
E. 3

Solution: Integrating with respect to y,

$$
A=\int_{0}^{1}[(2-y)-\sqrt{y}] d y=\left.\left(2 y-\frac{y^{2}}{2}-\frac{2}{3} y^{3 / 2}\right)\right|_{0} ^{1}=2-\frac{1}{2}-\frac{2}{3}=\frac{5}{6}
$$

OR Integrating with respect to x (with 2 regions),

$$
A=\int_{0}^{1} x^{2} d x+\int_{1}^{2}(2-x) d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}+\left.\left(2 x-\frac{x^{2}}{2}\right)\right|_{1} ^{2}=\frac{1}{3}+4-2-2+\frac{1}{2}=\frac{5}{6}
$$

B is correct.
7. (4 points) Write an integral (or integrals) to calculate the area of the finite region(s) bounded by the given curves.

$$
x+y=1, \quad 2 x-y=-1, \quad 4 x-y=4
$$

Solution: Finding the intersections of the curves:
$y=1-x$ and $y=2 x+1$ intersect at $x=0$
$y=1-x$ and $y=4 x-4$ intersect at $x=1$
$y=2 x+1$ and $y=4 x-4$ intersect at $x=5 / 2$
On $[0,1], 2 x+1 \geq 1-x$ and on $[1,5 / 2], 2 x+1 \geq 4 x-4$, so the area is

$$
\begin{aligned}
\int_{0}^{1} & {[(2 x+1)-(1-x)] d x+\int_{1}^{5 / 2}[(2 x+1)-(4 x-4)] d x } \\
& =\int_{0}^{1} 3 x d x+\int_{1}^{5 / 2}(5-2 x) d x=\left.\frac{3}{2} x^{2}\right|_{0} ^{1}+\left.\left(5 x-x^{2}\right)\right|_{1} ^{5 / 2} \\
& =\frac{3}{2}+\left(\left(5 \cdot \frac{5}{2}-\frac{25}{4}\right)-(5-1)\right) \\
& =\frac{3}{2}+\frac{25}{4}-4=\frac{31-16}{4}=\frac{15}{4}
\end{aligned}
$$

OR
In terms of y,

$$
\int_{0}^{1}[(y+4) / 4-(1-y)] d y+\int_{1}^{6}[(y+4) / 4-(y-1) / 2] d y=\frac{5}{8}+\frac{25}{8}=\frac{15}{4}
$$

