\qquad Mark: __ / 16

Mini-math Div 3/4: Monday, November 20, 2023 (15 minutes)

1. (2 points) The graph of the piecewise linear function f is shown in the figure to the right. What is the average value of f over $[-3,5]$?
A. -1
B. $-1 / 8$
C. 0
D. $1 / 4$
E. 2

2. (2 points) The graph of the velocity of a function is the piecewise linear function shown in the figure to the right. The initial position of the particle at time $t=0$ is $x=1$. What is the total distance the particle travels from $t=0$ to $t=6$?
A. 2
B. 3
C. 4

D. 8
E. 9
3. (2 points) The acceleration of a particle is modelled by $a(t)=2 t+3$ for $t \geq 0$. At $t=0$, the velocity of the particle is -2 and its position is 2.5 . What is the change in displacement of the particle from $t=0$ to $t=3$?
A. 9
B. 16
C. 16.5
D. 19
E. 22.5
4. (2 points) Suppose f is a differentiable function. Which of the following statements are true:
(I) The average value of the derivative of f over $[a, b]$ is the same as the average rate of change of f over $[a, b]$.
(II) There exists a $c \in[a, b]$ for which $f(c)$ equals the average value of f over $[a, b]$.
A. (I) only
B. (II) only
C. Both (I) and (II)
D. Neither (I) nor (II)
E. The truth of both statements depend on the specific choice of f
5. (2 points) Water is leaking out of a tub at a rate modelled by $r(t)=\frac{1}{t^{2}+1} \mathrm{~cm}^{3} /$ min, where t is in minutes. If the initial volume of the tub is $160000 \mathrm{~cm}^{3}$, which of the following represents the volume of the tub at time t ?
A. $160000+\int_{0}^{t} r(x) d x$
B. $160000-\int_{0}^{t} r(x) d x$
C. $160000-\frac{1}{t^{2}+1}$
D. $160000+\frac{r(t)}{t^{2}+1}$
E. $\frac{1}{t^{2}+1}$
6. (2 points) Find the area of the bounded region in the first quadrant below both $y=x^{2}$ and $y=2-x$ and above the x-axis.
A. $2 / 3$
B. $5 / 6$
C. 1
D. $7 / 6$
E. 3
7. (4 points) Write an integral (or integrals) to calculate the area of the finite region(s) bounded by the given curves.

$$
x+y=1, \quad 2 x-y=-1, \quad 4 x-y=4
$$

