Mini-math Div 3/4: Monday, October 23, 2023 (20 minutes) SOLUTIONS

1. (2 points) Solve the following differential equation:

$$
\frac{d y}{d x}=x y \sin \left(x^{2}\right) \cdot \ln y
$$

Solution:

$$
\begin{aligned}
\int \frac{1}{y \ln y} d y & =\int x \sin x^{2} d x \\
\ln |\ln y| & =-\frac{1}{2} \cos x^{2}+C_{1} \\
|\ln y| & =e^{-\frac{1}{2} \cos x^{2}+C_{1}} \\
\ln y & = \pm e^{-\frac{1}{2} \cos x^{2}+C_{1}} \quad \text { or } \quad C_{2} e^{-\frac{1}{2} \cos x^{2}} \\
y & =e^{ \pm e^{-\frac{1}{2} \cos x^{2}+C_{1}}} \quad \text { or } \quad e^{C_{2} e^{-\frac{1}{2} \cos x^{2}}}
\end{aligned}
$$

2. (2 points) During a chemical reaction, the rate of change of the amount of the chemical remaining is proportional to the amount remaining. At time $t=0$, the amount of the chemical is 60 g . At time $t=8$, the amount of the chemical is 12 g . At what time t is the amount of the chemical 4 g ?
A. $\frac{4 \sqrt{42}}{3}$
B. $\frac{28}{3}$
C. $\frac{8 \ln 15}{\ln 5}$
D. $\frac{8 \ln 4}{\ln 12}$
E. $\frac{8}{3}$

Solution:

$$
\begin{aligned}
P(t) & =P_{0} e^{k t}=P_{0}\left(e^{k}\right)^{t} \\
P_{1} & =P_{0}\left(e^{k}\right)^{t_{1}} \Rightarrow \quad e^{k}=\left(\frac{P_{1}}{P_{0}}\right)^{1 / t_{1}} \\
P(t) & =P_{0}\left(\frac{P_{1}}{P_{0}}\right)^{t / t_{1}} \\
P_{2} & =P_{0}\left(\frac{P_{1}}{P_{0}}\right)^{t_{2} / t_{1}} \Rightarrow t_{2}=\frac{t_{1} \ln \left(P_{2} / P_{0}\right)}{\ln \left(P_{1} / P_{0}\right)}=\frac{8 \ln (1 / 15)}{\ln (1 / 5)}=\frac{8 \ln 15}{\ln 5}
\end{aligned}
$$

(C)
3. (2 points) Solve the following initial value problem:

$$
\frac{d y}{d x}=y^{2}, \quad y(3)=-2
$$

A. $y=\frac{1}{5 / 2-x}$ for $x \neq 5 / 2$
B. $y=\frac{2}{5-2 x}$ for $x>5 / 2$
C. $y=-\frac{1}{x}-\frac{5}{3}$ for $x \neq 0$
D. $y=-\frac{5 x+3}{3 x}$ for $x>0$

Solution:

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =\int 1 d x
\end{aligned} \quad \Rightarrow \quad-\frac{1}{y}=x+C,
$$

Since the domain is the largest open interval which contains the initial condition, the domain is $x>5 / 2$.
(B)
4. The number of squirrels in a park at time t is modelled by the function $y=F(t)$ that satisfies the logistic differential equation $\frac{d y}{d t}=\frac{1}{2000} y(1500-y)$, where $t \geq 0$ is measured in weeks. The number of squirrels in the park at time $t=0$ is $F(0)=b$, where b is a positive constant.
(a) i. (1 point) If $b=300$, what is the largest rate of increase in the number of squirrels in the park?

Solution: Since $300<1500 / 2=750, F$ grows most rapidly when it is half the carrying capacity, 750. Then

$$
\left.\frac{d y}{d t}\right|_{F=750}=\frac{750}{2000}(1500-750)=\frac{1125}{4}=281.25
$$

ii. (1 point) If $b=1000$, what is the largest rate of increase in the number of squirrels in the park?

Solution: For $F>750, \frac{d y}{d t}>0$ and $\frac{d^{2} y}{d t^{2}}<0$, so F grows most rapidly when $F=1000$.

$$
\left.\frac{d y}{d t}\right|_{F=1000}=\frac{1000}{2000}(1500-1000)=250
$$

(b) (2 points) If $b=150$, find $\lim _{t \rightarrow \infty} F(t)$ and interpret the meaning of this limit in the context of the problem. For reference, the differential equation is $\frac{d y}{d t}=\frac{1}{2000} y(1500-y)$.

Solution: The carrying capacity is 1500 , so $\lim _{t \rightarrow \infty} F(t)=1500$.
This means in the long term, the population of squirrels in the park will tend to 1500 .
(c) (4 points) $\left(^{*}\right)$ Find the function $F(t)$ if $b=500$.

Solution:

$$
\begin{aligned}
\int \frac{d y}{y(1500-y)} & =\int \frac{d t}{2000} \\
\int\left(\frac{1 / 1500}{y}+\frac{1 / 1500}{1500-y}\right) & =\int \frac{d t}{2000} \\
\ln \left|\frac{y}{1500-y}\right|=(\ln |y|-\ln |1500-y|) & =\frac{1500}{2000} x+C=\frac{3}{4} x+C \\
\frac{y}{1500-y} & =C e^{3 t / 4}
\end{aligned}
$$

Using the initial condition,

$$
\frac{1}{2}=\frac{500}{1500-500}=C
$$

so

$$
\begin{aligned}
\frac{2 y}{1500-y} & =e^{3 t / 4} \\
2 y & =1500 e^{3 t / 4}-e^{3 t / 4} y \\
y & =\frac{1500 e^{3 t / 4}}{e^{3 t / 4}+2}
\end{aligned}
$$

(Alternatively, go directly to the general solution if you have memorized it. Be careful with using the correct general solution which depends on the form of the logistic DE.)

