Name: \qquad Mark: ___ / 14

Mini-math Div 3/4: Monday, October 23, 2023 (20 minutes)

1. (2 points) Solve the following differential equation:

$$
\frac{d y}{d x}=x y \sin \left(x^{2}\right) \cdot \ln y
$$

2. (2 points) During a chemical reaction, the rate of change of the amount of the chemical remaining is proportional to the amount remaining. At time $t=0$, the amount of the chemical is 60 g . At time $t=8$, the amount of the chemical is 12 g . At what time t is the amount of the chemical 4 g ?
A. $\frac{4 \sqrt{42}}{3}$
B. $\frac{28}{3}$
C. $\frac{8 \ln 15}{\ln 5}$
D. $\frac{8 \ln 4}{\ln 12}$
E. $\frac{8}{3}$
3. (2 points) Solve the following initial value problem:

$$
\frac{d y}{d x}=y^{2}, \quad y(3)=-2
$$

A. $y=\frac{1}{5 / 2-x}$ for $x \neq 5 / 2$
B. $y=\frac{2}{5-2 x}$ for $x>5 / 2$
C. $y=-\frac{1}{x}-\frac{5}{3}$ for $x \neq 0$
D. $y=-\frac{5 x+3}{3 x}$ for $x>0$
4. The number of squirrels in a park at time t is modelled by the function $y=F(t)$ that satisfies the logistic differential equation $\frac{d y}{d t}=\frac{1}{2000} y(1500-y)$, where $t \geq 0$ is measured in weeks. The number of squirrels in the park at time $t=0$ is $F(0)=b$, where b is a positive constant.
(a) i. (1 point) If $b=300$, what is the largest rate of increase in the number of squirrels in the park?
ii. (1 point) If $b=1000$, what is the largest rate of increase in the number of squirrels in the park?
(b) (2 points) If $b=150$, find $\lim _{t \rightarrow \infty} F(t)$ and interpret the meaning of this limit in the context of the problem. For reference, the differential equation is $\frac{d y}{d t}=\frac{1}{2000} y(1500-y)$.
(c) (4 points) $\left(^{*}\right)$ Find the function $F(t)$ if $b=500$.

