Proofs of Trigonometric Derivatives

The text on the right is not needed in the proof, but is included here to add to clarity.

$$
\begin{array}{rlrl}
\frac{d}{d x} \sin x & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\sin h \cos x-\sin x}{h} & \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h-\sin x}{h}+\lim _{h \rightarrow 0} \frac{\sin h \cos x}{h} & & \text { by the sine summation formula } \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h} & & \text { since } \sin x \text { and } \cos x \text { are constants with respect to } h \\
& =\sin x \cdot 0+\cos x \cdot 1 & & \text { by the first and second Fundamental Trig Limits } \\
& =\cos x & & \\
\frac{d}{d x} \cos x & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h} & & \\
& =\lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin h \sin x-\cos x}{h} & & \\
& =\lim _{h \rightarrow 0} \frac{\cos x \cos h-\cos x}{h}-\lim _{h \rightarrow 0} \frac{\sin h \sin x}{h} & & \text { by the cosine summation formula } \\
& =\cos x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sin h}{h} & & \text { since sin } x \text { and cos } x \text { are constants with respect to } h \\
& =\cos x \cdot 0-\sin x \cdot 1 & & \text { by the first and second Fundamental Trig Limits } \\
& =-\sin x & &
\end{array}
$$

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x} \frac{\sin x}{\cos x} & & \text { by the definition of } \tan x \\
& =\frac{\left(\frac{d}{d x} \sin x\right)(\cos x)-\left(\frac{d}{d x} \cos x\right)(\sin x)}{(\cos x)^{2}} & & \text { by the Quotient Rule } \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} & & \text { by the derivatives of sine and cosine } \\
& =\frac{1}{\cos ^{2} x} & & \text { by the Trigonometric Pythagorean Theorem } \\
& =\sec ^{2} x & & \text { by the definition of } \sec x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \sec x & =\frac{d}{d x} \frac{1}{\cos x} & & \text { by the definition of } \tan x \\
& =\frac{\left(\frac{d}{d x} 1\right)(\cos x)-\left(\frac{d}{d x} \cos x\right)(1)}{(\cos x)^{2}} & & \text { by the Quotient Rule } \\
& =\frac{\sin x}{\cos ^{2} x} & & \text { by the derivatives of } 1 \text { and cosine } \\
& =\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} & & \\
& =\sec x \tan x & & \text { by the definition of } \sec x \text { and } \tan x
\end{aligned}
$$

(There is also an easier proof using power rule and Chain Rule which I will accept but not require, as Chain Rule is in Unit 3.)

$$
\begin{aligned}
\frac{d}{d x} \cot x & =\frac{d}{d x} \frac{\cos x}{\sin x} & & \text { by the definition of } \cot x \\
& =\frac{\left(\frac{d}{d x} \cos x\right)(\sin x)-\left(\frac{d}{d x} \sin x\right)(\cos x)}{(\sin x)^{2}} & & \text { by the Quotient Rule } \\
& =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} & & \text { by the derivatives of sine and cosine } \\
& =\frac{-1}{\sin ^{2} x} & & \text { by the Trigonometric Pythagorean Theorem } \\
& =-\csc ^{2} x & & \text { by the definition of } \csc x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \csc x & =\frac{d}{d x} \frac{1}{\sin x} & & \text { by the definition of } \tan x \\
& =\frac{\left(\frac{d}{d x} 1\right)(\sin x)-\left(\frac{d}{d x} \sin x\right)(1)}{(\sin x)^{2}} & & \text { by the Quotient Rule } \\
& =\frac{-\cos x}{\sin ^{2} x} & & \text { by the derivatives of } 1 \text { and sine } \\
& =-\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} & & \\
& =\csc x \cot x & & \text { by the definition of } \csc x \text { and } \cot x
\end{aligned}
$$

(There is also an easier proof using power rule and Chain Rule which I will accept but not require, as Chain Rule is in Unit 3.)

