Volumes

Suppose R is the region bounded by the curves as indicated in the below. Assume $a<b$ and $c<d$.

Set up integrals for the following, but do not evaluate.

1. The volume of a solid with base given by R and whose cross-sections perpendicular to:
(a) the x-axis are squares.

Solution:

$$
\int_{a}^{b} s^{2} d x=\int_{a}^{b}[f(x)-g(x)]^{2} d x
$$

(b) the x-axis are rectangles whose heights are half their width.

Solution:

$$
\int_{a}^{b} \frac{1}{2} s^{2} d x=\int_{a}^{b} \frac{1}{2}[f(x)-g(x)]^{2} d x
$$

(c) the x-axis are right isosceles triangles whose hypotenuse is along the base.

Solution:

$$
\int_{a}^{b} \frac{1}{4} s^{2} d x=\int_{a}^{b} \frac{1}{4}[f(x)-g(x)]^{2} d x
$$

(d) the x-axis are semi-circles.

Solution:

$$
\int_{a}^{b} \frac{1}{2} \pi\left(\frac{s}{2}\right)^{2} d x=\int_{a}^{b} \frac{\pi}{8}[f(x)-g(x)]^{2} d x
$$

(e) the y-axis are semi-circles.

Solution:

$$
\int_{c}^{d} \frac{1}{2} \pi\left(\frac{s}{2}\right)^{2} d y=\int_{c}^{d} \frac{\pi}{8}[G(y)-F(y)]^{2} d y
$$

(f) the y-axis are rectangles whose heights are three times their width.

Solution:

$$
\int_{c}^{d} 3 s^{2} d y=\int_{c}^{d} 3[G(y)-F(y)]^{2} d y
$$

(g) the y-axis are right isosceles triangles whose hypotenuse is not on the base.

Solution:

$$
\int_{c}^{d} \frac{1}{2} s^{2} d y=\int_{c}^{d} \frac{1}{2}[G(y)-F(y)]^{2} d y
$$

(h) the y-axis are triangles whose heights are three times their base.

Solution:

$$
\int_{c}^{d} \frac{3}{2} s^{2} d y=\int_{a}^{b} \frac{3}{2}[G(y)-F(y)]^{2} d y
$$

2. The volume of the solid of revolution where we revolve the region R about:
(a) the x-axis

Solution:

$$
\pi \int_{a}^{b}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\pi \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

(b) the y-axis

Solution:

$$
\pi \int_{c}^{d}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d y=\pi \int_{c}^{d}\left([G(y)]^{2}-[F(y)]^{2}\right) d y
$$

(c) the line $y=-2$ (assume $c>-2$)

Solution:

$$
\begin{aligned}
\pi \int_{a}^{b}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x & =\pi \int_{a}^{b}\left([f(x)-(-2)]^{2}-[g(x)-(-2)]^{2}\right) d x \\
& =\pi \int_{a}^{b}\left([f(x)+2]^{2}-[g(x)+2]^{2}\right) d x
\end{aligned}
$$

(d) the line $x=-3$ (assume $a>-3$)

Solution:

$$
\begin{aligned}
\pi \int_{c}^{d}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d y & =\pi \int_{c}^{d}\left([G(y)-(-3)]^{2}-[F(y)-(-3)]^{2}\right) d y \\
& =\pi \int_{c}^{d}\left([G(y)+3]^{2}-[F(y)+3]^{2}\right) d y
\end{aligned}
$$

(e) the line $y=4$ (assume $d<4$)

Solution:

$$
\pi \int_{a}^{b}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\pi \int_{a}^{b}\left([4-g(x)]^{2}-[4-f(x)]^{2}\right) d x
$$

(f) the line $x=5$ (assume $b<5$)

Solution:

$$
\pi \int_{c}^{d}\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d y=\pi \int_{c}^{d}\left([5-F(y)]^{2}-[5-G(y)]^{2}\right) d y
$$

