Volumes

1. (Calculator permitted) Let R be the region bounded by the curves $y=\sqrt{1+x^{3}}$ and $y=x+1$. Set up integrals for the following, but do not evaluate.
(a) The area of R
(b) The volume of a solid whose base is R and cross-sections perpendicular to the x-axis are squares
(c) The volume of a solid whose base is R and cross-sections perpendicular to the y-axis are equilateral triangles
(d) The volume of the solid of revolution obtained by revolving R about the x-axis
2. (Calculator permitted) Let R be the region bounded by the curves $y=e^{x}$ and $y=2 x+1$.
(a) Find the area of R.
(b) Find the volume of the solid of revolution obtained by revolving R about the x-axis.
(c) Find the volume of the solid of revolution obtained by revolving R about the y-axis.
(d) Find the volume of the solid of revolution obtained by revolving R about the line $y=4$.
3. (Calculator permitted, but as a challenge you may try without a calculator) Let R be the region bounded by the curves $y=x+1, y=\frac{x}{2}+1$, and $y=4-x$.
(a) Find the area of R.
(b) Find the volume of the solid of revolution obtained by revolving R about the x-axis.
(c) Find the volume of the solid of revolution obtained by revolving R about the y-axis.
(d) $\left(^{*}\right)$ There exists a real number k such that if we revolve R about the line $x=k$, the resulting solid has the same volume as the solid obtained by revolving R about the x-axis. Find k.
