Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing.
 Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

Teach

MATHEMATICAL PRACTICES

Mathematical practices spiral throughout the course.

I Implementing
Justification

BC ONLY The purple shading represents BC only content.

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiplechoice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

Limits and Continuity				
AP EXA WEIGHTIN CLASS PERIOD	MG 10-12% AB 4-7% BC			
CHA 1.1 2	Introducing Calculus: Can Change Occur at an Instant?			
LIM 1.2 2	Defining Limits and Using Limit Notation			
LIM 1.3 2	Estimating Limit Values from Graphs			
LIM 1.4 2	Estimating Limit Values from Tables			
LIM 1.5	Determining Limits Using Algebraic Properties of Limits			
LIM 1.6	Determining Limits Using Algebraic Manipulation			
LIM 1.7	Selecting Procedures for Determining Limits			
LIM 1.8	Determining Limits Using the Squeeze Theorem			
LIM 1.9	Connecting Multiple Representations of Limits			
LIM 1.10 3	Exploring Types of Discontinuities			
LIM 1.11 3	Defining Continuity at a Point			
LIM 1.12	Confirming Continuity over an Interval			
LIM 1.13	Removing Discontinuities			
3 3	Connecting Infinite Limits and Vertical Asymptotes			
LIM 1.15 2	Connecting Limits at Infinity and Horizontal Asymptotes			
FUN 1.16	Working with the Intermediate Value Theorem (IVT)			

Personal Progress Check 1

Multiple-choice: ~45 questions Free-response: 3 questions (partial)

Differentiation: Definition and Basic Derivative Rules				
WE	AP EXAN	б 10-12% ав 4-7% вс		
CLASS	PERIOD	⁶ ~13-14 _{АВ} ~9-10 вс		
CHA 2	2.1	Defining Average and Instantaneous Rates of Change at a Point		
CHA 1 4	2.2	Defining the Derivative of a Function and Using Derivative Notation		
CHA 1	2.3	Estimating Derivatives of a Function at a Point		
FUN 3	2.4	Connecting Differentiability and Continuity: Determining When Derivatives Do and		
FUN 1	2.5	Do Not Exist Applying the Power Rule		
FUN 1	2.6	Derivative Rules: Constant, Sum, Difference, and Constant Multiple		
FUN LIM 1	2.7	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$		
FUN 1	2.8	The Product Rule		
FUN 1	2.9	The Quotient Rule		
FUN 1	2.10	Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions		

Personal Progress Check 2

Multiple-choice: ~30 questions Free-response: 3 questions (partial)

NOTE: Partial versions of the free-response questions are provided to prepare students for more complex, full questions that they will encounter on the AP Exam.

Differentiation: Composite, Implicit, and Inverse Functions
AP EXAM WEIGHTING 9–13% AB 4–7% BC
CLASS PERIODS ~10-11 AB ~8-9 BC
FUN 3.1 The Chain Rule
FUN 3.2 Implicit Differentiation
FUN3.3 Differentiating Inverse3Functions
FUN3.4 Differentiating Inverse Trigonometric Functions
FUN3.5 Selecting Procedures for Calculating Derivatives
FUN 3.6 Calculating Higher- Order Derivatives

UN	T	Contextua Applicatio Differenti	al ons of ation
A WEI CLASS P	P EXAM GHTING ERIODS	10-15 [%] ав ~10-11 ав	6-9 [%] вс ~6-7 вс
CHA 1	4.1	Interpreting the Meaning of the Derivative in Co	e ontext
CHA 1	4.2	Straight-Line Motion: Conne Position, Veloc Acceleration	cting ity, and
CHA 2	4.3	Rates of Chang Applied Contex Than Motion	e in tts Other
CHA 1	4.4	Introduction to Rates	Related
CHA 3	4.5	Solving Related Problems	l Rates
CHA 1	4.6	Approximating of a Function U Local Linearity Linearization	Values Ising and
LIM 3	4.7	Using L'Hospit for Determining of Indeterminat	al's Rule y Limits te Forms

	5	Analytical Applications of Differentiation
CLASS	AP EXAN EIGHTING PERIOD:	43 15-18% ав 8-11% вс 5 ~15-16 ав ~10-11 вс
FUN 3	5.1	Using the Mean Value Theorem
FUN 3	5.2	Extreme Value Theorem, Global Versus Local Extrema, and Critical Points
FUN 2	5.3	Determining Intervals on Which a Function Is Increasing or Decreasing
FUN 3	5.4	Using the First Derivative Test to Determine Relative (Local) Extrema
FUN 1	5.5	Using the Candidates Test to Determine Absolute (Global) Extrema
FUN 2	5.6	Determining Concavity of Functions over Their Domains
FUN 3	5.7	Using the Second Derivative Test to Determine Extrema
FUN 2	5.8	Sketching Graphs of Functions and Their Derivatives
FUN 2	5.9	Connecting a Function, Its First Derivative, and Its Second Derivative
FUN 2	5.10	Introduction to Optimization Problems
FUN 3	5.11	Solving Optimization Problems
FUN 1 3	5.12	Exploring Behaviors of Implicit Relations

Personal Progress Check 3

Multiple-choice: ~15 questions Free-response: 3 questions (partial/full)

Personal Progress Check 4

Multiple-choice: ~15 questions Free-response: 3 questions

Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 3 questions

UN	ит 6	Integration and Accumulation of Change
WE CLASS I	AP EXAN	4 17-20 [%] ав 17-20 [%] вс • ~18-20 ав ~15-16 вс
CHA 4	6.1	Exploring Accumulations of Change
LIM 1	6.2	Approximating Areas with Riemann Sums
LIM 2	6.3	Riemann Sums, Summation Notation, and Definite Integral Notation
FUN 1	6.4	The Fundamental Theorem of Calculus and Accumulation Functions
FUN 2	6.5	Interpreting the Behavior of Accumulation Functions Involving Area
FUN 3	6.6	Applying Properties of Definite Integrals
FUN 3	6.7	The Fundamental Theorem of Calculus and Definite Integrals
FUN 4	6.8	Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
FUN 1	6.9	Integrating Using Substitution
FUN 1	6.10	Integrating Functions Using Long Division and Completing the Square
FUN 1	6.11	Integrating Using Integration by Parts BC ONLY
FUN 1	6.12	Using Linear Partial Fractions BC ONLY
LIM 1	6.13	Evaluating Improper Integrals bc only
FUN 1	6.14	Selecting Techniques for Antidifferentiation

7 Differential Equations				
АР ЕХАМ WEIGHTING 6-12% AB 6-9% вс				
FUN 2	7.1 I V	Modeling Situat with Differentia Equations	tions l	
FUN 3	7.2 \ I	Verifying Soluti Differential Equ	ons for ations	
FUN 2	7.3 🕻	Sketching Slop	e Fields	
FUN 4	7.4 I	Reasoning Usin Fields	ig Slope	
FUN 1	7.5 / S	Approximating Solutions Using Method вс онгу	g Euler's	
FUN 1	7.6 I	Finding Genera Solutions Using Separation of V	l J ariables	
FUN 1	7.7 I S I	Finding Particu Solutions Using Initial Condition Separation of V	lar J ns and ariables	
FUN 3	7.8 H V H	Exponential Mo with Differentia Equations	dels 1	
FUN 3	7.9 I I	Logistic Models Differential Equ BC ONLY	s with ations	

8		of Integration
AF WEIG	EXAN	б 10-15% ав 6-9% вс
CLASS PE	RIOD	^в ~19-20 ав ~13-14 вс
CHA 1	8.1	Finding the Average Value of a Function on an Interval
CHA 1	8.2	Connecting Position, Velocity, and Acceleration of Functions Using Integrals
СНА 3	8.3	Using Accumulation Functions and Definite Integrals in Applied Contexts
4	8.4	Finding the Area Between Curves Expressed as Functions of x
CHA 1	8.5	Finding the Area Between Curves Expressed as Functions of y
СНА 2	8.6	Finding the Area Between Curves That Intersect at More Than Two Points
СНА 3	8.7	Volumes with Cross Sections: Squares and Rectangles
СНА 3	8.8	Volumes with Cross Sections: Triangles and Semicircles
3 3	8.9	Volume with Disc Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.10	Volume with Disc Method: Revolving Around Other Axes
CHA 4	8.11	Volume with Washer Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.12	Volume with Washer Method: Revolving Around Other Axes
СНА 3	8.13	The Arc Length of a Smooth, Planar Curve and Distance Traveled BC ONLY

Applications

UNIT

Personal Progress Check 6

Multiple-choice: • ~25 questions (AB) • ~35 questions (BC) Free-response: 3 questions

Personal Progress Check 7

Multiple-choice: • ~15 questions (AB) • ~20 questions (BC) Free-response: 3 questions

Personal Progress Check 8

Multiple-choice: ~30 questions Free-response: 3 questions

UNIT 9	T	Parametr Equation Coordina Vector-Va Function	ic s, Polar tes, and lued s вс омцу		
AP WEIGI	AP EXAM WEIGHTING N/A AB 11–12% BC				
CHA 2	9.1 I I H	Defining and Differentiation Parametric E	l ng Equations		
CHA 1	9.2 S C H	Second Deri of Parametri Equations	vatives c		
CHA 1	9.3 H c h H	Finding Arc of Curves Gi by Parametr Equations	Lengths iven ic		
CHA 1	9.4 I I V	Defining and Differentiation Valued Func	l ng Vector- ttions		
FUN 1	9.5 I \	ntegrating V Jalued Func	Vector- ttions		
FUN 1	9.6 S H H	Solving Mot Problems Us Parametric a Jalued Func	ion sing und Vector- ttions		
FUN 2	9.7 I (I H	Defining Pol Coordinates Differentiatin Polar Form	ar and ng in		
CHA 3	9.8 H H H	Find the Are Region or th Bounded by Polar Curve	a of a Polar e Area a Single		
CHA 3	9.9 H H	Finding the Region Bour Fwo Polar C	Area of the nded by urves		

U	NIT 0	Infinite Sequenc Series Bo	es and
w	AP EXAN EIGHTING	ми N/А ав	17–18 % вс
CLASS	PERIOD	^в N/А ав м	·17–18 вс
LIM 3	10.1	Defining Conv and Divergent Series	ergent Infinite
LIM 3	10.2	Working with Geometric Ser	ries
LIM 3	10.3	The <i>n</i> th Term Divergence	Test for
LIM 3	10.4	Integral Test f Convergence	or
LIM 3	10.5	Harmonic Seri <i>p</i> -Series	es and
LIM 3	10.6	Comparison T Convergence	'ests for
LIM 3	10.7	Alternating Se for Convergen	eries Test Ice
LIM 3	10.8	Ratio Test for Convergence	
LIM 3	10.9	Determining A or Conditional Convergence	bsolute
LIM 1	10.10	Alternating Se Error Bound	eries
LIM 3 2	10.11	Finding Taylo Polynomial Approximation of Functions	r ns
LIM 1	10.12	Lagrange Erro	or Bound
LIM 2	10.13	Radius and In of Convergence Power Series	terval :e of
LIM 2	10.14	Finding Taylo Maclaurin Ser a Function	r or ies for
LIM 3	10.15	Representing Functions as Power Series	

Personal Progress Check 9

Multiple-choice: ~25 questions Free-response: 3 questions

Personal Progress Check 10

Multiple-choice: ~45 questions Free-response: 3 questions