Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

Teach

MATHEMATICAL PRACTICES
Mathematical practices spiral throughout the course.

1	Implementing	3	Justification
	Mathematical		
	Processes	4	Communication and Notation
2	Connecting		
	Representations		
BIG IDEAS			
Big ideas spiral across topics and units.			
CHA	Change	FUN	Analysis of
LIM			Functions
BC	ONLY		
The p	purple shading re	esents	BC only content.

Assess

Assign the Personal Progress Checks-either as homework or in class-for each unit. Each Personal Progress Check contains formative multiplechoice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

1.1 Introducing Calculus: Can Change Occur at an Instant?

1.2 Defining Limits and Using Limit Notation
1.3 Estimating Limit Values from Graphs
LIM 1.4 Estimating Limit Values from Tables
1.5 Determining Limits Using Algebraic Properties of Limits
LIM 1.6 Determining Limits Using Algebraic Manipulation
1.7 Selecting Procedures for Determining Limits
1.8 Determining Limits Using the Squeeze Theorem
1.9 Connecting Multiple Representations of Limits
1.10 Exploring Types of Discontinuities
1.11 Defining Continuity at a Point
1.12 Confirming Continuity over an Interval
1.13 Removing Discontinuities
1.14 Connecting Infinite Limits and Vertical Asymptotes
1.15 Connecting Limits at Infinity and Horizontal Asymptotes
1.16 Working with the Intermediate Value Theorem (IVT)

Personal Progress Check 1

Multiple-choice: ~45 questions
Free-response: 3 questions (partial)

\section*{Differentiation: Definition and Basic Derivative Rules
 | AP EXAM WEIGHTING | 10-12\% AB | ${ }_{\text {BC }}$ |
| :---: | :---: | :---: |
| CLASS PERIODS | ~13-14 | -9-10 |

Personal Progress Check 2

Multiple-choice: ~30 questions Free-response: 3 questions (partial)

3.1 The Chain Rule
3.2 Implicit Differentiation
3.3 Differentiating Inverse Functions
3.4 Differentiating Inverse Trigonometric Functions
3.5 Selecting Procedures for Calculating Derivatives
3.6 Calculating HigherOrder Derivatives

4.1 Interpreting the Meaning of the Derivative in Context
4.2 Straight-Line Motion: Connecting Position, Velocity, and Acceleration
4.3 Rates of Change in Applied Contexts Other Than Motion
4.4 Introduction to Related Rates
4.5 Solving Related Rates Problems
4.6 Approximating Values of a Function Using Local Linearity and Linearization
4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate Forms

Multiple-choice: ~ 15 questions Free-response: 3 questions (partial/full)

5.1 Using the Mean Value Theorem
5.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points
5.3 Determining Intervals on Which a Function Is Increasing or Decreasing
5.4 Using the First Derivative Test to Determine Relative (Local) Extrema
5.5 Using the Candidates Test to Determine Absolute (Global) Extrema
5.6 Determining Concavity of Functions over Their Domains
5.7 Using the Second Derivative Test to Determine Extrema
5.8 Sketching Graphs of Functions and Their Derivatives
5.9 Connecting a Function, Its First Derivative, and Its Second Derivative
5.10 Introduction to Optimization Problems
5.11 Solving Optimization Problems
5.12 Exploring Behaviors of Implicit Relations

Personal Progress Check 5
Multiple-choice: ~35 questions
Free-response: 3 questions

6.1 Exploring
Accumulations of Change
6.2 Approximating Areas with Riemann Sums
6.3 Riemann Sums, Summation Notation, and Definite Integral Notation
6.4 The Fundamental Theorem of Calculus and Accumulation Functions
6.5 Interpreting the Behavior of Accumulation Functions Involving Area
6.6 Applying Properties of Definite Integrals
6.7 The Fundamental Theorem of Calculus and Definite Integrals
6.8 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
6.9 Integrating Using Substitution
6.10 Integrating Functions Using Long Division and Completing the Square
6.11 Integrating Using Integration by Parts bC ONLY
6.12 Using Linear Partial Fractions bc only
6.13 Evaluating Improper Integrals bc only
6.14 Selecting Techniques for Antidifferentiation

8.1 Finding the Average Value of a Function on an Interval
8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals
8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts
8.4 Finding the Area Between Curves Expressed as Functions of x
8.5 Finding the Area Between Curves Expressed as Functions of y
8.6 Finding the Area Between Curves That Intersect at More Than Two Points
8.7 Volumes with Cross Sections: Squares and Rectangles
8.8 Volumes with Cross Sections: Triangles and Semicircles
8.9 Volume with Disc Method: Revolving Around the x - or y-Axis
8.10 Volume with Disc Method: Revolving Around Other Axes
8.11 Volume with Washer Method: Revolving Around the x - or y-Axis
8.12 Volume with Washer Method: Revolving Around Other Axes

8.13 The Arc Length of a Smooth, Planar Curve and Distance Traveled bC only

Personal Progress Check 6

Multiple-choice:

- ~25 questions (AB)
- ~35 questions (BC)

Free-response: 3 questions

Personal Progress Check 7

Multiple-choice:

- ~15 questions (AB)
- ~20 questions (BC)

Free-response: 3 questions

Personal Progress Check 8

Multiple-choice: ~30 questions
Free-response: 3 questions

10.1 Defining Convergent
and Divergent Infinite
Series
10.2 Working with
Geometric Series
10.3 The nth Term Test for Divergence
10.4 Integral Test for Convergence
10.5 Harmonic Series and p-Series
10.6 Comparison Tests for Convergence
10.7 Alternating Series Test for Convergence
10.8 Ratio Test for Convergence
10.9 Determining Absolute or Conditional Convergence
10.10 Alternating Series Error Bound
10.11 Finding Taylor Polynomial Approximations of Functions
10.12 Lagrange Error Bound
10.13 Radius and Interval of Convergence of Power Series
10.14 Finding Taylor or Maclaurin Series for a Function
10.15 Representing Functions as Power Series

Personal Progress Check 10
Multiple-choice: ~45 questions
Free-response: 3 questions

